Seminarium Zakładu Mechaniki i Fizyki Płynów

Modeling of the effects of interferon on spatial spread of viral infection

dr Anna Marciniak-Czochra, University of Heidelberg, Germany (ABIOMED visiting professor)

czwartek, 8 grudnia 2005

Interferons are a family of active biochemical species, which help to ght viral infections by spreading from infected cells to uninfected cells and triggering production of e ector molecules. These latter when activated confer on cells resistance from the virus. Recently, in a series of experiments, Duca et al. (Biotechnol. Prog., 2001) observed planar cultures of hamster kidney epithelial and murine astrocytoma cells infected by a point source of virus. In this way, they were able to observe a spreading cicular wave of infection followed by a wave of dead cells. It was inconclusive whether this process involved intereferon production. As an e ort to understand Duca et al. experiments, we devised a model of viral infection and interferon production, which involves virions, uninfected, infected and resistant cells, as well as the interferon. We assumed that interferon is produced by infected cells and spread by di usion to neighboring uninfected cells, making them resistant. At the same time, the virus is spread, also by di usion and the nal outcome is the result of competition beween these two processes. We carried out a simulation study, which shows that the model qualitatively reproduces the experiments of Duca et al. To understand the process, we should nd estimates of parameters of the model, consistent with current biological knowledge. In addtion, we are planning to carry out experiments using cells with interferon production blocked, to compare their outcome to those with interferon production active. This will provide an opportunity to directly compare experiments with the model.